Nutrients and Water Quality: A Region 8 Collaborative Workshop

Wastewater Nutrient Removal, Sustainability, and Permitting

Wastewater Treatment Capabilities

Sustainability

Nutrient Discharge Permitting

David L. Clark
HDR Engineering, Inc.
dclark@hdrinc.com

Numeric Nutrient Criteria and Limits of Wastewater Treatment Technology¹

Parameter	Typical Municipal Raw Wastewater, mg/l	Secondary Effluent (No Nutrient Removal), mg/l	Advance			
			Typical Biological Nutrient Removal (BNR), mg/l	Enhanced Nutrient Removal (ENR), mg/l	Limits of Treatment 1 Technology, mg/l	Typical In- Stream Nutrient Criteria, mg/l
Total						
Phosphorus	4 to 8	4 to 6	1	0.25 to 0.50	0.05 to 0.07	0.02 to 0.05
Total Nitrogen	25 to 35	20 to 30	10	4 to 6	3 to 4	0.300 to 0.600

¹Ignoring Considerations of Variability and Reliability of Wastewater Treatment Performance

Las Vegas, NV (TP 0.170 mg/l)

Clean Water Services, OR (TP 0.100 mg/l)

Lacy, Olympia, Tumwater Thurston Co (LOTT), WA (TIN 2 mg/l)

Coeur d'Alene, ID (TP 0.050 mg/l)

Treatment Costs Escalate Substantially Approaching Technology Limits

Water Environment Research Foundation (WERF) "Striking the Balance Between Wastewater Treatment Nutrient Removal and Sustainability" November 2010

- 1. Secondary Treatment (No nutrient removal)
- 2. Biological Nutrient Removal (BNR) TP 1 mg/L TN 8 mg/L
- 3. Enhanced Nutrient Removal (ENR) TP 0.1-0.3 mg/L TN 4-8 mg/L
- 4. Limit of Treatment Technology (LOT) TP < 0.1 mg/L TN 3 mg/L
- 5. Reverse Osmosis (RO) TP < 0.01 mg/L TN 1 mg/L

Nonpoint Sources Dominate Many Watersheds

Phosphorus Loading Summaries for Gulf of Mexico, Chesapeake Bay, and Flathead Lake

0007724

Balance and Sustainability to Protect Water Quality

- As Much as We Like Wastewater Treatment...
 - ... Advanced Treatment Increases:
 - Capital and Operating Costs
 - Energy Use
 - Chemical Use
 - Atmospheric Emissions
 - May Not Always Benefit Water Quality

Comparison of Point and Nonpoint Source Nutrient Control Performance

Approach	Nutrient Removal Performance	Cost-Effectiveness		
Point Source	80% to 90%	\$0.50 to \$50+ \$/lb		
Advanced Treatment	80% to 90%			
Nonpoint Source		\$0.50 to \$300 ⁺ \$/lb		
Best Management Practices ¹	15% to 80%			

¹Conservation tillage, grass buffers, detention basins, and wetlands

Sustainability Comparison of Point and Nonpoint Source Nutrient Controls

Approach	Electrical Power	Chemical Use	Greenhouse Gas	Additional Watershed Enhancements		
Point Source	+50% to	Alum, ferric,	+120% over	None		
Advanced Treatment	+250% over secondary treatment	methanol, other carbon sources	secondary treatment			
Nonpoint Source			Soquestors	Enhanced habitat,		
Best Management Practices ¹	None	None	Sequesters carbon	aesthetics, sediment reduction		

¹Conservation tillage, grass buffers, detention basins, wetlands

Phosphate Ban in Household Automatic Dishwashing Detergents

- Beginning with Washington
 State House Bill 2263, March
 2006
- Effective July 1, 2010
 - Maximum 0.5% by Weight
 - Commercial Dishwashing Not Affected

Dishes Still Dirty? Blame Phosphate-Free Detergent ---National Public Radio, Dec 15, 2010

"I looked at a plumber's rear end for about two months this summer sticking out from under my sink. I was just totally frustrated. I couldn't figure out what was going wrong. I'm angry at the people who decided that phosphate was growing algae. I'm not sure that I believe that" -- Sue Wright from Austin, Texas

- ILLINOIS (SB376) Governor Blagojevich signed the bill into law on August 13, 2007.
- INDIANA (HB 1120) The SDA model including the July 1, 2010 effective date was signed by the governor on March 3, 2008.
- MARYLAND (SB766 & HB1131) The original bill was signed into law on Tuesday, April 24, 2007. Legislation extending the effective date to July 1, 2010 was signed into law on May 13, 2008
- MASSACHUSETTS (SB536) SDA model was signed into law on February 21, 2008.
- MICHIGAN (Substitute 2 for SB152) Governor Granholm signed the SDA model into law on January 6, 2009.
- MINNESOTA (Original bills SF1109 / HF1382; Omnibus SF1312) Governor Pawlenty signed the bill into law on May 25, 2007.
- 7. MONTANA (SB 200) Signed into law April 16, 2009
- B. **NEW HAMPSHIRE** Bill was signed into law on July 30, 2009.
- OHIO (SB214) The bill contains the July 1, 2010 effective date. The bill was signed on June 3, 2008.
- OREGON The legislation incorporating the SDA model, SB 631a, was signed into law on June 11, 2009.
- 11. PENNSYLVANIA (SB1017) The bill was signed into law on May 13, 2008.
- 12. UTAH (H.B 303) The legislation was signed into law on March 14, 2008.
- 13. VERMONT (SB137) Governor Douglas signed the bill into law on May 16, 2007.
- 14. VIRGINIA (HB233) The bill was signed into law on February 22, 2008.
- 15. WASHINGTON STATE (HB2263) The bill was signed into law March 27, 2006.
- 16. WISCONSIN The bill was signed into law on November 12, 2009.

Vetoed (1)

0007728

CALIFORNIA (SB 1230) carried an effective date of **July 1**, 2010. It was vetoed by the Governor, at the end of the session, despite industry's support.

Appropriate Discharge Permit Guidance for Nutrients

Translation water quality criteria to NPDES to permit limits

- Critical interpretation of water quality Issues
 - Pre-formulated permit guidance from EPA and States often focused on toxics
- Appropriate averaging periods
- Variability In low nutrient plant performance

Over-specifying effluent discharge permit limits will not provide additional water quality protection but may result in compliance issues

Example of Impractical Effluent Discharge Permit Requirements Below Limit of Technology

- Ruidoso, NM
 - Total Nitrogen
 - 1 mg/L 30 Day Average
 - 1.5 mg/L Daily Max
 - Total Phosphorus
 - 0.1 mg/L 30 Day
 Average
 - 0.15 mg/L Daily Max

NPDES Permit No NM0029165

AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

In compliance with the provisions of the Clean Water Act, as amended, (33 U.S.C. 1251 et. seq; the "Act"),

City of Ruidoso Downs and Village of Ruidoso WWTP 313 Cree Meadows Drive Ruidoso, NM 88345

Post-Construction Effluent Limits - 2.6 MGD Design Flow - OUTFALL 001 Continued

			DISCH	ARGE LIMIT	ATIONS			
EFFLUENT CHARACTERISTICS		lbs/day, unless noted		mg/l, unless noted			MONITORING REQUIREMENTS	
POLLUTANT	STORET	30-DAY	7-DAY	30-DAY	7-DAY	DAILY MAX	MEASUREMENT	SAMPLE TYPE
	CODE	AVG	AVG	AVG	AVG		FREQUENCY	
Flow	50050	Report MGD	Report MGD	***	***	***	Continuous	Totalizing Meter
Biochemical Oxygen Demand, 5-day	00310	651	976	30	45	N/A	1/Week	6-Hr Composite
Total Suspended Solids	00530	651	976	30	45	N/A	1/Week	6-Hr Composite
E. coli Bacteria (*1)	51040	N/A	N/A	126 (*2)	N/A	410 (*2)	1/Week	Grab
Cyanide (WAD) (*4)	00718	Report	N/A	Report	N/A	Report	Once/Quarter	24-Hr Composite
Total Nitrogen ,Ti <13°C (*5, *6, *7)	00600	<195.2	N/A	<9	N/A	< 9 (*8)	Once/2 weeks	24-Hr Composite
Total Nitrogen, Ti ≥ 13°C (*5, *6, *7)	00600	<130.1	N/A	<6	N/A	< 6 (*9)	Once/2 weeks	24-Hr Composite
Total Nitrogen (*5, *15)	00600	21.7	N/A	1	N/A	1.5	Once/Month	24-Hr Composite
Total Phosphorus (*10)	00665	2.2	N/A	0.1	N/A	0.15	Once/Month	24-Hr Composite
Total Thallium (*11)	01019	0.37	N/A	10.87 gg/L	N//A	16.10 tgl	Once/Month	24 Hr Composite
TRC (*12)	50060	N/A	N/A	N/A	M/A	19 ug/l	Daily	Grab

Nutrients Differ From Toxics

Nutrients

- No Immediate Impact
 - Aside from Ammonia
- Watershed Scale Impacts
 - Nutrient Enrichment Leads to Aquatic Growth
- Algal Response Over Longer Periods
 - Longer Averaging Period Appropriate for Nutrients
 - Seasonal or Annual Averages
 Appropriate
- Treatment Technology
 - Variability at Low Levels in the Best Technologies

Toxics

- Acute and Chronic Impacts on Aquatic Life
 - Chlorine, Metals, Organics
- Near-field (mixing zone) and Far-field (watershed) Impacts
- Long Term Response
 - Average Limits
- Short Term Response
 - Maximum Limits Required
- Treatment Technology
 - Available Technology to Prevent Excursions

0007731

Summary

- Nutrient Management is Important in Many Waterbodies
- Appropriate Nutrient Effluent Limits Should be Based On:
 - Water Quality Response
 - Capabilities of Treatment Technologies
 - Balanced Considerations of Sustainability
- Over-specifying Effluent Limits Provides No Additional Water Quality Benefit
 - But May Result in Permit Compliance Issues